Creating tables and charts is easy -- all you need to do is have Microsoft Excel and some data -- but designing them is more complicated. Graphics and design are basic to how we communicate the meaning of data. Edward Tufte – one of the preeminent scholars in the field – said “Graphics reveal data. Indeed graphics can be more precise and revealing than conventional statistical computations” (Tufte, 2001, p 13). But graphics can only reveal data if they are well-designed.

Research has shown that of the sensory receptors in our body, 70% reside in our eyes. So most of what we see and perceive of the world around us is processed through our eyes. That’s why “I understand” and “I see” are often used interchangeably.

If we want to effectively present information visually, we need to understand the strengths and weaknesses of visual perception. For example, the human visual system has tremendous capacity to recognize patterns – but only if they are presented in certain ways. And it has a tendency to misinterpret or completely miss information if it is presented in a non-intuitive way.

Drawing from the research of Stephen Few, Edward Tufte and other visual design experts, we have developed three overarching guidelines for designing tables and graphs: (1) organize the data, (2) highlight the data, and (3) show the data.

(1) Organize the data

The two basic possibilities for organizing data are with tables and charts. Neither is better than the other, but each have their own strengths and specific purposes. The important thing to remember is that before you begin the design process, you need ask yourself: What’s my point?

The same data can be presented in many different ways and the “right” design will depend upon your intended audience and the message you want to highlight. So it’s incumbent upon you, as the designer, to ask yourself this important question before you begin. This will ensure the most effective presentation of the data and will guide your design decisions.

Consider your audience and presentation medium

The way you present your data will depend both on who you are presenting to and how it will be presented. Detailed tables work perfectly well in printed documents, but are poor choices for a PowerPoint presentation. The sidebar to the left provides two simple rules for developing PowerPoints.

Use the proper format for your purpose

A good rule of thumb is this: If you want to present your audience with details, then present data in a table. But if you want to present patterns or relationships, then you should create a chart.
Tables interact primarily with our verbal system, as we do with written language. This means that we process information in a sequential fashion, either reading down columns or across rows of numbers, and comparing a handful of numbers at a time (Few, 2004).

The primary benefit of tables is that they make it easy to look up exact values (Few, 2004), so it is best to use tables:
- To look up individual values
- To compare individual values
- When precise values are required

Charts are perceived primarily with our visual system, which involves the mechanics of sight and principles of visual perception.

It is our visual system that allows us to see and understand patterns and relationships (Few, 2004).

Unlike tables, graphs allow you to illustrate patterns and relations among measurements. The times you want to do this include:
- When the message is in the pattern
- To reveal relationships among multiple values

What type of data are you summarizing?
The type of data will have implications on how it would be best presented. In a nutshell, data are either quantitative or categorical. Quantitative data measure things; categorical data group them (Few, 2004).

The basic types of categorical data that have implications for chart selection are as follows. (This section was adapted from Few, 2004, pp 17-19.)
- Nominal data are discrete and have no intrinsic order. Two examples are gender and race.
- Ordinal data have a prescribed order such as levels of satisfaction from Very Satisfied through Neutral to Very Dissatisfied; Small, Medium, and Large; or tenure status from tenured, tenure-track, to non-tenure-track. To display them in any other order would not make sense, but they are not truly numeric.
- Interval data consist of a series of sequential numerical ranges that have a distinct order and can be divided into equal portions.
 - Time categories are the prime example. Twelve months will always add up to one year in ways that (e.g.) three mediums do not add up to a large.
 - In that way, interval measures are meaningful in relation to each other and can be arranged in ascending or descending order.
 - Other examples of interval data in IR would include age, salary and other financial measures.

REVIEW: Before doing any design, you should ask the questions “What’s my point?”. The answer, including whether you want to provide exact numbers or patterns and relationships, will guide all your decisions. After identifying the purpose, your presentation medium, and the type of data you have, you’re ready to begin the design process.

Want to provide precise values ➔ Table Sparse data ➔ Table
Want to show pattern /relationships of data ➔ Chart Dense data ➔ Chart
What type of chart would be best for my data?

Most data can be presented in any chart format, but there are best practices about what you should use. The purpose of your presentation and the type of data will at least inform if not determine the type of chart to use. The following is a sampling of best practices that was adapted partly from Kosslyn (1994) and Stephen Few.

- **Use a stacked-bar chart for part-to-whole relationships.**
- **Avoid pie charts** and rely on bar graphs instead. Pie charts are generally ineffective in presenting data and patterns.
- **Use a line graph if the x-axis will show interval data.** Remember, interval data are numerical, have a distinct order, and can be divided into equal portions.
 - Intervals should always be equal in size (e.g., time, salary distribution, etc). In this case there are data for every other years from start to finish.
 - Lines should only directly connect values in adjacent intervals. (Leave a gap if have missing data.)
 - The first of the following charts is a **bad** example of how to present interval data with missing data; the second is a good improvement. (These examples were taken from http://www.perceptualedge.com)

 ![Bad Example of Interval Data](image1)

 ![Good Improvement of Interval Data](image2)

- **Use a bar graph to show groups comparison.** Typically this will be nominal or ordinal data
- **Use a scatterplot to show correlations.**
- **Use stacked bars to present cumulative totals.**

(2) **Highlight the data**

In designing charts, we need to keep in mind that our brains intuitively recognize differences in color, size, shape, hue, and orientation and attach specific meanings to them. These visual properties are called “pre-attentive variables” because the process of perceiving them is automatic and immediate and does not involve conscious thought. It is up to us as designers to use this knowledge to intentionally highlight the most critical information. One of the best ways to do this is with color.

Make Good Color Decisions

Color Basics

The color wheel is a simple way to introduce concepts and terms related to the use of color. We all remember from grade school that the primary colors are Red, Blue and Yellow, which are organized in a triangle on the wheel. Nestled between the primary colors are the secondary colors of Purple, Green, and Orange.
Colors\(^1\) that appear on opposite sides of the color wheel are *complementary colors*. The primary combinations are Red/Green, Orange/Blue, and Purple/Yellow. When placed next to each other, complementary colors appear brighter and their intensity is heightened. Color schemes based on complementary color *can* result in “vibrations” that are distracting and difficult to look at. As you can see here, the middle set is more difficult to read than either of the other two. This complementary combination does not work.

Analogous colors are next to each other on the color wheel. Generally speaking analogous colors tend to create harmony or unity. But in some cases, you may need more contrast than what they allow.

Color has three basic properties. *Hue* is the name of the color. *Value* refers to how light or dark the hue is and *intensity* refers to how bright or dull the hue is. These qualities are independent of each other. Any hue can be light, midtone, or dark; any hue can be intense or neutral (Dunn, 1995).

One important thing to remember is that color is contextual and we understand it in relation to its environment (Bowers, 1999). In other words, an individual color will change as the colors surrounding it change. The grey squares to the left are all the same color, but when they are surrounded by different colors they seem different. Specifically, the one on the left looks a lot darker than the one on the right. So a color may be right in one context but not in another.

Temperature of colors
All colors have a “temperature”, which refers to its relative warmth or coolness. The temperature of colors can add an emotional message to the graphic and affects how they appear on the page.

- **Cool colors** like purple, blue and green tend to have a calming effect. They appear smaller than warm colors and visually recede on the page.
- **Warm colors** energize rather than calm and appear closer and more prominent than cool counterparts. So, a red can visually overpower a blue, even if used in equal amounts.
- **Neutral colors** of black, white, silver, gray, and brown help to put the focus on other colors or tone down colors that might otherwise be overpowering on their own. This painting (by color master Piet Mondrian) demonstrates how the red and yellow come forward. You definitely know the other colors are present, but the red and yellow demand your attention before the cool blue and neutral grey.

Color palettes have meaning
One resource for selecting colors for your palette is http://www.colorbrewer.org. The site -- created by Cynthia Brewer, a faculty member at Penn State -- provides a variety of tested palettes along with their CMYK and RGB values so you can recreate the values. She describes three types of palettes.

Qualitative palettes include colors that are distinctly different from each other. They are most successfully used to represent categorical data.

1 Some of these images were taken from http://www.worqx.com (which is a terrific resource on color) and used through their Creative Commons License.
Sequential palettes will typically be a single hue that ranges either from neutral to bright or – as in this case – from light to dark. They are used successfully with ordinal or interval data.

Diverging palettes are basically two sequential palettes that meet in the middle with a neutral color. They allow you to have two anchors, such as agree and disagree, and easily distinguish by color. They are used successfully with ordinal or interval data.

Practical tips about highlighting data: See Few (Feb 2008) for more detail and examples.

Use color meaningfully and with restraint.
- Color is not always necessary; shades of grey will be adequate for many needs. It is also most cost-effective to print and easy to duplicate.
- Too many or too intense colors may overwhelm your data. You want people’s focus to be on the data not its decoration.
- Use different colors to correspond to differences of meaning in the data. Select a color palette that matches your purpose and your data.
- Don’t always rely on your school colors; they may not be the best choice.

Use the three properties of color to highlight data.
- **Intensity:** Highlight with bright colors.
- **Value:** Highlight with a dark value on a white background or light color on a dark background.
- **Hue:** Highlight with warm hues.
- Be aware of the context of your colors.
 - Complimentary color schemes provide the most contrast, but can be overpowering.
 - Use a background color with sufficient contrast so objects in a table or graph can be seen.
 - If you want different objects of the same color in a table or graph to look the same, make sure the background is consistent.

Additional tips.
- To guarantee that most people who are colorblind can distinguish groups of data, avoid using a combination of red and green.
- Use colors that are already associated with the data content. For example, use black/red for financial measures; and red/blue for the political parties or ideology.

(3) Show the data

Don’t decorate your data

“Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space”. –Edward Tufte

Research clearly shows that features like pictures and 3-D rendering are visually distracting and hinder the audience from understanding what is important and what is irrelevant. As designers, we need to display only meaningful content and abandon extraneous items.
One of Tufte’s rules is to maximize the “data-ink ratio”, which he describes with this formula.

\[
\text{Data-ink ratio} = \frac{\text{“Data-ink”}}{\text{Total ink used to print the graphic}}
\]

In other words, you want to look at the total amount of ink that is used in the display and minimize the amount that is not necessary to provide or describe the data. Increasing the data-ink ratio places more emphasis on the data than on the features of design. Tufte argues that – within reason – each pixel of a graphic should add meaning or context.

Many charts are graphs are decorated in ways that complicate the display with unnecessary and distracting graphics. Ultimately, decoration is a product of poor design that deemphasizes the data being communicated.

The slides to the left are two versions of the same data. In the one on the top, your eyes are inevitably drawn to the background picture rather than the bar chart. The picture decorates, but does not enhance the chart and should be eliminated.

When we eliminate all decoration, as shown in the graph on the bottom, we focus entirely on the data and actually show the data. The original version might look pretty, but it decorates rather than communicates.

More practically, here are some specific features to avoid:

- **3-dimensional graphs**: Nearly all data needs in IR can be presented in 2-D; the use of 3-D graphs adds only chart-junk.

- **Pattern or gradient fills**: At times, you’ll need to make distinctions between different data points, you should do so with color (or shades of grey) rather than patterns or gradients.

- **Excess decoration**, whether in background or otherwise.

Because so many people prepare 3-D charts, we would like to spend a little time specifically telling you why you shouldn’t.

The image below is a very basic pie chart with all pieces equal to 25% of the total. As we flatten it into a 3-D chart, it becomes increasingly more difficult to tell that the four pieces are the same size. Thus, 3-D style charts are solely decorative and distort the data along with any message you want to communicate. There are virtually no data in IR that require three dimensions. Stay away from 3-D charts!
Simplify, simplify, simplify

A similar recommendation is to simplify, simplify, simplify. In a nutshell, we can summarize the *show the data* section with a quote from Einstein:

"Everything should be made as simple as possible but not simpler".

This same thinking applies to charts and tables. Keep what you need and discard the rest. As an example, the chart on the top can be simplified and streamlined by removing the values for count and percentage and adding a simple legend or using the stereotypical colors of pink and blue in place of a legend.

As you simplify your graph and maximize the data-ink ratio, some portions of a graphic that you should consider erasing or muting include:

- **Grid and axes**: A grid can be muted or absent, so its presence is only implicit; otherwise, it could compete with important data.
 - Similarly, excessive **ticks** along the axis should be avoided.

- **Legends and legend borders**: Legends can also be extraneous and unnecessary to convey the meaning of a graphic. Effective chart titles and axis labeling often reduce the need for legends. When legends are necessary, their borders can be eliminated to facilitate the visual connection between the legend and the data.

- **Redundant data-ink**: Avoid redundant data-ink that depicts the same number over and over, which would include showing numerical values on top of bar graphs.

- **Lines around bars in bar graph**: Generally you can eliminate lines around bar charts since are redundant to the shape of the bar itself.

There are some cases when you will want to include some of these “unnecessary items”. If you do so, then do so intentionally for a specific reason rather than by default. A good rule of thumb is that if an item can be excluded without compromising the message, then it should be removed.

Five tips on fonts and alignment

1. Use serif fonts, like Garamond or Times, for printed documents.
2. Use sans serif fonts, like Arial or Calibri, for on-screen presentations.
3. Avoid specialty fonts that are primarily decorative.
4. Right align numbers and column headers.
5. Left align dates and text.
Review: Let’s finish with a summary of what you should do in preparing tables and charts:

- **Know what message you want to convey to your audience.**
 - If you know what message you want your audience to receive, then your design decisions will be much easier and, in the end, you’ll know whether you’ve achieved your goal.
 - Ensure your chart/table emphasizes the content you want to highlight.

- **Choose a presentation style to fit your data and its purpose**
 - If you need to present precise numbers, use a table.
 - If you need to present a pattern or set of relationships, use a chart.
 - If you only have a couple of numbers to present, simply use text.
 - Remember that pie charts are difficult to discern and should be avoided.
 - If you are presenting data in a PowerPoint, use powerful images without much text and put the necessary details in a handout.

- **Be intentional about color decisions**
 - Don’t use too much of it.
 - Be sure it helps explain, highlight, or show the data.

- **Don’t decorate your data.**
 - Don’t use 3-D charts!
 - Eliminate or minimize things like axes, grids, legends, and redundant data-ink.
 - If it can be removed without compromising the message, then remove it!
 - Remember to *simplify, simplify, simplify* and remove all extraneous features.

- **When you’re done, look at it again…**
 - …and ask yourself “does the table/graph clearly communicate my point?”
 - If you don’t have it quite right, then tweak the display and keep trying. Over time the design process will come much more naturally.

This handout and references are available at:

http://aaude.org/atd
References and resources

